LMFP Batteries: New direction for battery development

What is an LMFP Battery?

LMFP battery is a new type of lithium-ion battery, its cathode material is mainly composed of lithium manganate, iron phosphate, and manganese phosphate, and the electrolyte is anhydrous phosphate solution. Compared with other common LiFePO4 Battery (such as ternary lithium batteries and lithium cobalt acid batteries), lithium manganese iron phosphate batteries have excellent performance in terms of safety, thermal stability, and energy density

LMFP battery


The difference between LMFP battery and  LiFePO4 battery

The main differences between LMFP and lithium iron phosphate batteries are their material composition, cost, energy density, and application fields. 

Material composition. The chemical form of lithium iron phosphate (LFP) is LiFePO₄. Lithium iron Manganese phosphate is a manganous material added to lithium iron phosphate to form the composition of LiMnFePO₄. This difference in the material improves the performance of lithium ferromanganese phosphate.

Cost: Because lithium ferromanganese phosphate requires additional manganese material, its cost is relatively high. The lithium iron phosphate battery requires 0.61kg of iron material per kWh of the positive electrode, and the lithium iron manganese phosphate battery requires 0.13kg of iron material plus 0.38kg of manganese material. In contrast, the price of manganese is more expensive than iron, so the cost of lithium ferromanganese phosphate batteries is higher.

Energy density: The theoretical energy density of lithium iron manganese phosphate batteries is higher than that of lithium iron phosphate batteries, reaching 697Wh/kg. However, due to the low conductivity of lithium ferromanganese phosphate leading to its capacity is difficult to fully play, and the existing technology to improve the electrochemical performance of lithium ferromanganese phosphate limited, its actual energy density may not be as high as the theoretical value.

Applications: Lithium iron phosphate batteries have been widely used in electric vehicles and energy storage systems due to their high energy density, long cycle life, and high safety. Lithium ferric manganese phosphate, although the cost is higher and the actual energy density may not be as expected, it has the characteristics of high energy density and high safety and is also regarded as an upgraded version of lithium iron phosphate, which is expected to show its advantages in specific applications.

Application

Due to their cost-effectiveness and performance, LMFP batteries have the potential to replace LFP batteries and capture part of the NMC battery market. Additionally, combining LMFP with NMC cathode materials could enhance the safety of NMC batteries, presenting another promising application.


Recent posts

Best Lithium Marine Battery: High-Performance LiFePO4 for Boats

Zhiguang & HiTHIUM Launch Industry-Leading ZGEner-Plus 3.0 BESS with Breakthrough 587Ah Battery Technology

What Does Ah Mean on a Battery: Amp Hours (Ah) and Watt Hours (Wh) Explained

Svolt's 65kWh Dragon Armor II Battery Achieves Mass Production at Huzhou Base

LiFePO4 Battery Vs Lithium Ion Batteries: The Ultimate Showdown You Must See Before Buying

Sungrow Launches Next-Generation Residential ESS for Reliable Backup Power

Selecting a LiFePO4 Trolling Motor Battery for Maximum Performance

Sunwoda Showcases Innovation and Sustainability at the 3rd China International Supply Chain Expo

On-Board Chargers for EVs: Key Advantages and Limitations

Tesla Reports Electric Vehicle Batteries Maintain 80% Capacity After 200,000 Miles

Understanding LiFePO4 Battery Cell Grades: A Comprehensive Guide to Quality Classification

BYD Showcases Ultra-Fast Charging Technology at 17th International Transport Expo, Pioneering Green Logistics

LiFePO4 Battery Charging: How to Choose the Right Charger for LiFePO4 Batteries?

CATL and BHP Forge Strategic Partnership to Drive the Electrification Transformation of the Mining Sector

How to Replace Your Car Starter Battery with LiFePO4: Key Considerations